Integration Techniques
Table of Contents
- 1. Common Functions
- 2. Integration by Substitution
- 3. Integration by Parts
- 4. Integration by Reduction Formulae
- 5. Integrand Transformation
- 6. Differentiation Under the Integral Sign
- 7. Ansatz
- 8. Definite Integral
- 9. Composition of Techniques
- 10. Others
- 11. References
1. Common Functions
1.1. Trigonometric Functions
- Half angle formula if the power is even for sine and cosine.
- Substitution for odd power of sine and cosine.
- Sum formula if the integrand is the multiplication of single powered sine and cosine.
- Substitution for even power of tangent and secent.
- List of integrals of trigonometric functions - Wikipedia
1.2. Rational Functions
1.2.1. Polynomial Division
1.2.2. Partial Fraction Decomposition
1.2.2.1. Heaviside Cover-Up Method
For a rational function of the form:
\begin{equation*} R(x) = \frac{f(x)}{g(x)} \end{equation*}where \( f(x), g(x) \) is a polynomial, with the set of distinct roots of \( g(x) \) \( \{ \alpha_i\}_i \) and the multiplicity of each being \( \{m_i\}_i \), can always be decomposed into partial fraction:
\begin{equation*} R(x) = \sum_{i} \sum_{j=1}^{m_i}\frac{A_{ij}}{(x-\alpha_i)^j}. \end{equation*}where \( A_{ij} \) being real numbers.
\( A_{im_i} \) can be calculated by removing the factors including the \( i \)th root from the denominator:
\begin{equation*} A_{im_i} = \lim_{x\to \alpha_i} (x-\alpha_i)^{m_i}R(x). \end{equation*}Further, in the case of repeated roots, one way to calculate \( A_{ij} \) is taking derivative:
\begin{equation*} A_{ij} = \lim_{x\to \alpha_i}\left( \frac{d}{dx}\right)^{m_i-j} (x-\alpha_i)^{m_i}R(x). \end{equation*}\( A_{ij} \) can be also be found with expanding the partial fraction and setting \( x \) to any value.
1.2.3. Trigonometric Substitution
1.2.4. Common Antiderivatives
1.2.4.1. Inverse Trigonometric Functions
1.2.4.1.1. Composition
- \(\sin(\cos^{-1} x) = \sqrt{1-x^2}\)
- \(\sec(\tan^{-1}x) = \sqrt{1+x^2}\)
1.2.4.1.2. Derivatives
- The denominator is the derivative of the normal function in terms of the normal function as \(x\).
- \[ \frac{d}{dx}\sin^{-1}x = \frac{1}{\sqrt{1-x^2}} \]
- \[ \frac{d}{dx}\tan^{-1}x = \frac{1}{1+x^2} \]
- \[ \frac{d}{dx}\sec^{-1}x = \frac{1}{|x|\sqrt{x^2-1}} \]
1.2.4.2. Inverse Hyperbolic Functions
1.2.4.2.1. Equivalent Expression
- \(\sinh^{-1}x = \ln\left( x + \sqrt{x^2+1}\right)\)
- \(\cosh^{-1}x = \ln\left(x+\sqrt{x^2-1}\right)\)
- \[ \begin{align*} \cosh^{-1} &y = x \\ \implies &y+\sqrt{y^2 - 1} = e^x\\ \implies &y^2 - 1 = e^{2x} - 2ye^x + y^2 \\ \implies & y = \frac{e^{2x}+1}{2e^x} = \cosh x \end{align*} \]
- \( \displaystyle \tanh^{-1}x = \frac{1}{2}\ln\frac{1+x}{1-x} \)
1.2.4.2.2. Derivatives
- \[ \frac{d}{dx}\sinh^{-1}x=\frac{1}{\sqrt{1+x^2}} \]
- \[ \frac{d}{dx}\cosh^{-1}x = \frac{1}{\sqrt{x^2-1}} \]
- \[ \frac{d}{dx}\tanh^{-1}x = \frac{1}{1-x^2} \]
2. Integration by Substitution
- \(u\)-Substitution, Reverse Chain Rule, Change of Variables
2.1. Common Substitution
- \(e^x \rightsquigarrow u\)
- Then \(dx = du/u\). See if this would simplify.
- \(\sqrt{ax^n + b} \rightsquigarrow u\)
2.2. Trigonometric Substitution
2.3. Hyperbolic Substitution
2.4. Tangent Half-Angle Substitution
- Universal Trigonometric Substitution, Weierstrass Substitution
- \[ \tan \left( \frac{x}{2} \right) \leadsto u \]
This transforms trigonometric functions as
\begin{align} \sin x &= \frac{2u}{u^{2}+1} \\ \cos x & = \frac{u^{2}-1}{u^{2}+1} \\ \tan x & = \frac{2u}{u^{2}-1} \\ dx & = \frac{2}{u^{2}+1}du \end{align}
2.5. Euler Substitution
- Method for evaluating integrals of the form: \[ \int R(x, \sqrt{ax^2 + bx + c})\,dx \] where \(R\) is a rational function.
2.5.1. Euler's First Substitution
- When \(a > 0\).
- It is favorable to have \(b = 0\).
- \[ \sqrt{ax^2+bx+c} = \pm x\sqrt{a} + t. \]
- \[ x = \frac{t^2-c}{b\mp2t\sqrt{a}} \]
2.5.1.1. Examples
- \[
\int \sqrt{1+x^2}\,dx
\]
- with:
- \[ t = x + \sqrt{x^2 + 1} \]
- \[ x = \frac{t^2 - 1}{2t} = \frac{t}{2} - \frac{1}{2t} \]
- \[ \sqrt{x^2 + 1} = \frac{t^2 + 1}{2t} = \frac{t}{2} + \frac{1}{2t} \]
- \[ dx = \frac{t^2 + 1}{2t^2}\,dt = \left(\frac{1}{2} + \frac{1}{2t^2}\right)\,dt \]
- \[
\int\frac{dx}{\sqrt{x^2 + c}}
\]
- with:
- \[ t = x+\sqrt{x^2+c} \]
- \[ x = \frac{t^2 - c}{2t} \]
- \[ \sqrt{x^2+c} = \frac{t^2 + c}{2t} \]
- \[ dx = \frac{t^2 + c}{2t^2}\,dt \]
- \[
\int\frac{dx}{x\sqrt{x^2 + 4x - 4}}
\]
- with:
- \[ t = \sqrt{x^2 + 4x -4} - x \]
- \[ x = \frac{t^2 + 4}{4 - 2t} \]
2.5.2. Euler's Second Substitution
- When \(c > 0\).
- Two \(x\) terms on the denominator.
- \[ \sqrt{ax^2 + bx + c} = xt \pm \sqrt{c}. \]
- \[ x = \frac{b \mp 2t\sqrt{c}}{t^2 - a} \]
2.5.2.1. Examples
- \[ \int\frac{dx}{x\sqrt{-x^2 + x + 2}} \]
- with:
- \[ \sqrt{-x^2 + x+ 2} = xt + \sqrt{2} \]
- \[ x = \frac{1-2\sqrt{2}t}{t^2 + 1} \]
- \[ \sqrt{-x^2 + x + 2} = \frac{-\sqrt{2}t^2 + t + \sqrt{2}}{t^2 + 1} \]
- \[ dx = \frac{2\sqrt{2}t^2 - 2t - 2\sqrt{2}}{(t^2 + 1)^2}\,dt \]
2.5.3. Euler's Third Substitution
- When the polynomial \(ax^2 + bx + c\) has real roots \(\alpha, \beta\).
- \[ \sqrt{ax^2 + bx + c} = \sqrt{a(x-\alpha)(x-\beta)}= (x-\alpha)t. \]
- \[ x = \frac{a\beta - \alpha t^2}{a - t^2} \]
2.5.3.1. Examples
- \[
\int\frac{x^2\,dx}{\sqrt{-x^2 + 3x -2}}
\]
- with:
- \[ \sqrt{-(x-2)(x-1)} = (x-2)t \]
- \[ x = \frac{-2t^2 - 1}{-t^2 - 1} \]
- \[ dx = \frac{2t}{(-t^2 - 1)^2}\,dt \]
- \[ \sqrt{-x^2+3x - 2} = \frac{t}{-t^2 - 1} \]
3. Integration by Parts
3.1. Tabular Integration
- DI Method
- \[ \int f(x)g(x) \,dx \]
- Integrate a product by calculating the table:
D | I | |
---|---|---|
\(+\) | \(f(x)\) | \(g(x)\) |
\(-\) | \(f^{(1)}(x)\) | \(g^{(-1)}(x)\) |
\(+\) | \(f^{(2)}(x)\) | \(g^{(-2)}(x)\) |
\(...\) | \(...\) | \(...\) |
\((-1)^n\) | \(0\) | \(g^{(-n)}(x)\) |
- The antiderivative is obtained by the sum of the products of
diagonals:
- \[ \sum_{k=0}^{n-1} (-1)^kf^{(k)}(x)g^{(-k-1)}(x) + \int (-1)^n f^{(n)}(x)g^{(-n)}\,dx \]
- The process can be stopped at any stage, leaving an unresolved integral.
4. Integration by Reduction Formulae
- \[ \int \sec^n ax\, dx = \frac{1}{a}\tan ax\sec^{n-2} ax + (n-2)\int\sec^{n-2} ax\, dx \]
5. Integrand Transformation
- Very obscure. Just make it integrable.
- Multiply by 1, Add 0.
5.1. Matching the Denominator
- Transform the numerator such that: \[ \int\frac{g(x)}{f(x)}\,dx \rightsquigarrow \int\frac{Af(x) + Bf'(x)}{f(x)}\,dx \] where \(A, B\) are constants.
- Consider this if the numenator is part of the denominator or the derivative of it.
5.1.1. Examples
- \[ \int \frac{dx}{1+e^x} \]
- Add 0: \[ = \int \frac{1+e^x}{1+e^x} - \frac{e^x}{1+e^x}\,dx = x - \ln(1+e^x) + C. \]
5.2. Completing the Factor
- Multiply by the factor that simplifies on both the numerator and the denominator.
- Multiply 1: \[ t^2 - t + 1 = \frac{t^3 + 1}{t+1}. \]
5.3. Expanding into Power Series
- Expand part of the integrand into the power series and interchange the integral and the sum for integration.1
5.4. Introducing Integrals or Derivatives
- Substitute part of the integrand as the integral or derivative of another function, hopefully simpler to calculate.
- The integral may be the zeroth integral, that is, the evaluation at the limits.
- Then use the interchange of integrals or integration by parts.
6. Differentiation Under the Integral Sign
- Feynman Technique
- Differentiate with respect to some variable that is not being integrated.
- The variable may as well be created.
7. Ansatz
- Make an educated guess of the antiderivative.
- The antiderivative would most likely contain the antiderivatives of the parts of the integrand.
8. Definite Integral
8.1. Reciprocation
\( x \rightsquigarrow 1/u \)
\[ \int_a^{1/a}f(x)\,dx = \int_a^{1/a} f \left( \frac{1}{x} \right) \frac{1}{x^2} \,dx \]
It include the case with the bound \(0\) to \(\infty\).
Consider it, especially when \( 1 + x^2 \) is in the denominator.
8.2. King's Rule
Border Flip substitution \[ \int_{a}^{b} f(x) \, dx =\int_{a}^{b} f(a+b-x) \, dx \]
Especially, \[ \int_{-a}^a f(x)\,dx = \int_{-a}^a f(-x)\,dx. \]
8.3. Glasser's Master Theorem
- For real numbers \(a, \{a_i\}, \{b_i\}\), the substitution \[ u = x - a \sum_{n=1}^N\frac{|a_n|}{x-b_n} \] does not change the result: \[ \mathcal{P}\int_{-\infty}^\infty f(u)\,dx = \mathcal{P}\int_{-\infty}^\infty f(x)\,dx, \] where \(\mathcal{P}\) denote the Cauchy principal value.
8.4. Symmetry
- If \( f(a+b - x) = f(x) \), then
\[ \int_a^bf(x)\,dx = 2\int_a^{(a+b)/2}f(x)\,dx. \]
8.5. Normalization
- \[ \int_0^{x_0} R\left(\frac{f(x)}{f(x_0)}\right)\,dx \rightsquigarrow \int_0^c \tilde{R}(f(t))\,dt. \]
8.6. Averaging after Substitution
- Used when the bound remains unchanged during substitution
\[ I = \int_a^bf(x)\,dx = \frac{1}{2} \int_a^b(f(x) + \tilde{f}(x))\,dx. \]
9. Composition of Techniques
9.1. Inverse Function
- Integration of inverse function
- \[
\int f^{-1}(x)\,dx
\]
- Substitution: \(f^{-1}(x) = u\), \(x = f(u)\), \(dx = f'(u)\,du\).
Integration by part:
\begin{align*} \int uf'(u)\,du &= uf(u) - \int f(u)\,du \\ &= uf(u) - F(u) + C\\ &= xf^{-1}(x) - F(f^{-1}(x)) + C. \end{align*}- Note that this is calculating the area of the rectangle \(xf^{-1}(x)\), and taking away the usual integral \(F(f^{-1}(x))\).
9.1.1. Examples
- \[ \int \sin^{-1}(x)\,dx = x\sin^{-1}(x) + \sqrt{1-x^2} + C \]
- \[ \int \cos^{-1}(x)\,dx = x\cos^{-1}(x) - \sqrt{1-x^2} + C \]
- \[ \int \tan^{-1}(x)\,dx = x\tan^{-1}(x) - \frac{1}{2}\ln(1+x^2) + C \]
- \[ \int \ln x\,dx = x\ln x - x + C \]
- This technique is useful in the calculation of the inverse cumulative distribution, useful for generating samples from a probability distribution.
10. Others
- \[
\int_0^1 \frac{dx}{\sqrt{1+x} + \sqrt{1-x}}
\]
- Obtain the antiderivative as a whole, and then take the limit.
- A very unfriendly integral problem! - YouTube
11. References
- https://en.wikipedia.org/wiki/Heaviside_cover-up_method
- A trick I have ignored for long enough… - YouTube
- https://en.m.wikipedia.org/wiki/Integration_by_substitution
- https://en.wikipedia.org/wiki/Tangent_half-angle_substitution
- https://en.wikipedia.org/wiki/Euler_substitution
- Three ways!! - YouTube
- https://en.wikipedia.org/wiki/Integration_by_parts#Repeated_integration_by_parts
- https://en.wikipedia.org/wiki/Integration_by_reduction_formulae
- A masterful theorem for integration. - YouTube
- Integration of inverse function
- https://en.wikipedia.org/wiki/Glasser%27s_master_theorem